BREED MIX

- **Pomeranian**: 50.0%
- **Siberian Husky**: 50.0%

GENETIC STATS

- **Predicted adult weight**: 25 lbs
- **Genetic age**: 29 human years

 Based on the date of birth you provided

TEST DETAILS

- **Kit number**: EM-3058152
- **Swab number**: 31001805240127

BREED MIX BY CHROMOSOME

Our advanced test identifies from where Archie inherited every part of the chromosome pairs in his genome.
Our algorithms predict this is the most likely family tree to explain Archie’s breed mix, but this family tree may not be the only possible one.
POMERANIAN

Cute, feisty and furry, Poms are intelligent and loyal to their families. Don’t let their cuteness fool you, however. These independent, bold dogs have minds of their own. They are alert and curious about the world around them. Unfortunately, in their minds, they are much larger than they really are, which can sometimes lead them to harass and even attack much larger dogs. Luckily, if they are properly socialized with other dogs and animals, they generally get along quite well with them. Poms take their name from the province of Pomerania, in Germany. They became especially popular when Queen Victoria allowed some of her Pomeranians to be shown in a conformation show, the first Pomeranians ever to be shown. Pomeranians make excellent pets for older people and those who are busy, because they aren’t an overly dependent breed. They are also good for apartment dwellers or homes that don’t have a backyard. Because of their small size, they aren’t recommended for families with small children who might injure them accidentally. While Poms are good with children, they are not a good choice for very young or highly active children because of their small size. Never let your small children and your Pom play without supervision. Because they are so small, Poms can be perceived as prey by owls, eagles, hawks, coyotes, and other wild animals. Never leave them outside unattended, and be watchful if there are predatory birds in your location. If this is the case, stay close to your Pom to discourage birds from trying to carry them off!

Fun Fact
Pomeranians boast one of the widest variety of color options in one breed. The American Kennel Club lists 23 accepted colors.

RELATED BREEDS

American Eskimo Dog
Cousin breed
SIBERIAN HUSKY

The Siberian Husky originated from the extreme north east of Siberia. They were initially domesticated by the Chukchi - an ancient population that thrived by herding reindeer and moving with each season to new grazing regions. They came to America in 1909 and found their place in the Alaskan wilderness. They love to be out in cold weather and are known to be the ideal sled dog. They have strong insulated paws that are perfect for traction in the snow. The Siberian Husky also has two layers in their coat that protects them from Arctic winters.

Fun Fact
In 1925 a team of Siberian Huskies saved Nome, Alaska by carrying the serum to cure diphtheria a considerable distance by sled. The run was done in the middle of a blizzard and in conditions below -23 degrees Fahrenheit. The run is remembered by the annual Iditarod Trail Sled Race, and Balto, the famous sled dog who led his team through the final leg.

RELATED BREEDS

- Alaskan Malamute
 - Sibling breed
- Greenland Dog
 - Sibling breed
- Samoyed
 - Cousin breed
Through Archie’s mitochondrial DNA we can trace his mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1d

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

HAPLOTYPE: A247

Part of the large A1d haplogroup, this common haplotype occurs in village dogs all over the world. Among the 32 breeds we have sampled it in, the most common occurrences include Boxers, Labrador Retrievers, and Papillons.
PATERNAL LINE

Through Archie’s Y chromosome we can trace his father’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn’t stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, “Have sail, will travel!” From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the Americas, and scavenging throughout Old World settlements.

HAPLOTYPe: H1a.15

Part of the large A1a haplogroup, this haplotype is found in village dogs from across the globe (outside of Asia). As for breeds, it is primarily seen in German Shepherds, Labrador Retrievers, Nova Scotia Duck Tolling Retriever. It is by far the most common haplotype in German Shepherds.
TRAITS: COAT COLOR

<table>
<thead>
<tr>
<th>Trait</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Locus (MC1R)</td>
<td>No dark mask or grizzle (Ee)</td>
</tr>
<tr>
<td>K Locus (CBD103)</td>
<td>More likely to have a patterned haircoat (k(k^y))</td>
</tr>
<tr>
<td>A Locus (ASIP)</td>
<td>Agouti (Wolf Sable) coat color pattern (a(^wa^1))</td>
</tr>
</tbody>
</table>

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive e allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow’s peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the Em allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of Em but one or two copies of the Eg allele usually have a melanistic ‘widow’s peak’ (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K\(^B\) allele “overrides” the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K\(^B\) allele is referred to as the “dominant black” allele. As a result, dogs with at least one K\(^B\) allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog’s coat and cause other patterns, such as white spotting. Dogs with the k\(k^y\) genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K\(^B\)k\(^y\) may be brindle rather than black or brown.

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not ee at the E Locus and are K\(^B\)k\(^y\) at the K Locus. Sable (also called “Fawn”) dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called “Wolf Sable”) dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.
TRAITS: COAT COLOR (CONTINUED)

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Locus (MLPH)</td>
<td>Dogs with two copies of the d allele will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that dilute dogs have a higher incidence of Color Dilution Alopecia, especially in certain breeds. Dogs with one copy of the d allele will not be dilute, but can pass the d allele on to their puppies.</td>
</tr>
<tr>
<td>Dark areas of hair and skin are not lightened (DD)</td>
<td></td>
</tr>
<tr>
<td>B Locus (TYRP1)</td>
<td>Dogs with two copies of the b allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the b allele will produce black pigment, but can pass the b allele on to their puppies. E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".</td>
</tr>
<tr>
<td>Black or gray hair and skin (Bb)</td>
<td></td>
</tr>
<tr>
<td>Saddle Tan (RALY)</td>
<td>The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus a allele, so dogs that do not express a are not influenced by this gene.</td>
</tr>
<tr>
<td>Not expressed (NI)</td>
<td></td>
</tr>
</tbody>
</table>

embark
TRAITS: COAT COLOR (CONTINUED)

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an M^m result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an M^M^* result are likely to be phenotypically merle or double merle. Dogs with an mm result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

No merle alleles (mm)
TRAITS: OTHER COAT TRAITS

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnishings (RSPO2) LINKAGE</td>
<td>Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.</td>
</tr>
<tr>
<td>Coat Length (FGF5)</td>
<td>The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the T allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral G allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."</td>
</tr>
<tr>
<td>Shedding (MC5R)</td>
<td>Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.</td>
</tr>
<tr>
<td>Coat Texture (KRT71)</td>
<td>Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats.</td>
</tr>
</tbody>
</table>
TRAIT

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hairlessness (FOXI3)</td>
<td>Very unlikely to be hairless (NN)</td>
</tr>
</tbody>
</table>

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **ND** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hairlessness (SGK3)</td>
<td>Very unlikely to be hairless (NN)</td>
</tr>
</tbody>
</table>

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism type 2 (OCA2), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oculocutaneous Albinism Type 2 (SLC45A2)</td>
<td>Likely not albino (NN)</td>
</tr>
</tbody>
</table>
TRAITS: OTHER BODY FEATURES

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muzzle Length (BMP3)</td>
<td>Likely medium or long muzzle (CC)</td>
</tr>
<tr>
<td>Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral C allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived A allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.</td>
<td></td>
</tr>
<tr>
<td>Tail Length (T)</td>
<td>Likely normal-length tail (CC)</td>
</tr>
<tr>
<td>Whereas most dogs have two C alleles and a long tail, dogs with one G allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with GG genotypes have not been observed, suggesting that dogs with the GG genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.</td>
<td></td>
</tr>
<tr>
<td>Hind Dewclaws (LMBR1)</td>
<td>Unlikely to have hind dew claws (CC)</td>
</tr>
<tr>
<td>Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog’s paw and hock. Dogs with at least one copy of the T allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some TT or TC dogs will have hind dewclaws.</td>
<td></td>
</tr>
</tbody>
</table>
TRAITS: OTHER BODY FEATURES (CONTINUED)

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Eye Color (ALX4) LINKAGE</td>
<td></td>
</tr>
<tr>
<td>Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. NN dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.</td>
<td>Likely to have blue eyes or partial blue eyes (NDup)</td>
</tr>
<tr>
<td>Back Muscling & Bulk, Large Breed (ACSL4)</td>
<td></td>
</tr>
<tr>
<td>The T allele is associated with heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The “bulky” T allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral C allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.</td>
<td>Likely normal muscling (CC)</td>
</tr>
</tbody>
</table>
TRAITS: BODY SIZE

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Size (IGF1)</td>
<td>Intermediate (NI)</td>
</tr>
<tr>
<td>The I allele is associated with smaller body size.</td>
<td></td>
</tr>
<tr>
<td>Body Size (IGFR1)</td>
<td>Larger (GG)</td>
</tr>
<tr>
<td>The A allele is associated with smaller body size.</td>
<td></td>
</tr>
<tr>
<td>Body Size (STC2)</td>
<td>Intermediate (TA)</td>
</tr>
<tr>
<td>The A allele is associated with smaller body size.</td>
<td></td>
</tr>
<tr>
<td>Body Size (GHR - E191K)</td>
<td>Intermediate (GA)</td>
</tr>
<tr>
<td>The A allele is associated with smaller body size.</td>
<td></td>
</tr>
<tr>
<td>Body Size (GHR - P177L)</td>
<td>Larger (CC)</td>
</tr>
<tr>
<td>The T allele is associated with smaller body size.</td>
<td></td>
</tr>
</tbody>
</table>
TRAITS: PERFORMANCE

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude Adaptation (EPAS1)</td>
<td>This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to “altitude sickness.” This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.</td>
</tr>
<tr>
<td>Appetite (POMC) LINKAGE</td>
<td>This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.</td>
</tr>
</tbody>
</table>
CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

- Archie’s baseline ALT level is Low Normal

Why is this important to your vet?
Archie has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Archie has this genotype, as ALT is often used as an indicator of liver health and Archie is likely to have a lower than average resting ALT activity. As such, an increase in Archie’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?
Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition
Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated
Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.
HEALTH REPORT

How to interpret Archie’s genetic health results:
If Archie inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Archie for that we did not detect the risk variant for.

A genetic test is not a diagnosis
This genetic test does not diagnose a disease. Please talk to your vet about your dog’s genetic results, or if you think that your pet may have a health condition or disease.

Good news!
Archie is not at increased risk for the genetic health conditions that Embark tests.

<table>
<thead>
<tr>
<th>Breed-Relevant Genetic Conditions</th>
<th>6 variants not detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Genetic Conditions</td>
<td>176 variants not detected</td>
</tr>
</tbody>
</table>
ARCHIE

BREED-RELEVANT CONDITIONS TESTED

Archie did not have the variants that we tested for, that are relevant to his breeds:

☑ Progressive Retinal Atrophy, rcd3 (PDE6A)
☑ X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
☑ Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
☑ GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)
☑ Oculocutaneous Albinism, OCA2 (Pekingese Type)
☑ Hereditary Vitamin D-Resistant Rickets (VDR)
ARCHIE

DNA Test Report

Test Date: November 13th, 2018

embk.me/archie57

ADDITIONAL CONDITIONS TESTED

Archie did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Archie's breeds may not yet be known.

- MDR1 Drug Sensitivity (MDR1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 11, Shepherd Variant 1)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 1, Shepherd Variant 2)
- Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- Thrombopathia (RASGRP1 Exon 8)
- Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 4)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 7)
- Von Willebrand Disease Type I (VWF)
- Canine Leukocyte Adhesion Deficiency Type I, CLADI (ITGB2)
- Canine Leukocyte Adhesion Deficiency Type III, CLADIII (FERMT3)
- Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cavalier King Charles Spaniel Variant)
- Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12)
- May–Hegglin Anomaly (MYH9)
- Prekallikrein Deficiency (KLKB1 Exon 8)
- Pyruvate Kinase Deficiency (PKLR Exon 5)
ADDITIONAL CONDITIONS TESTED

- Pyruvate Kinase Deficiency (PKLR Exon 7 Beagle Variant)
- Pyruvate Kinase Deficiency (PKLR Exon 10)
- Trapped Neutrophil Syndrome (VPS13B)
- Ligneous Membranitis, LM (PLG)
- Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- Severe Combined Immunodeficiency (PRKDC)
- Severe Combined Immunodeficiency (RAG1)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 1)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 2)
- Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21 Irish Setter Variant)
- Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- Progressive Retinal Atrophy (CNGB1)
- Progressive Retinal Atrophy (SAG)
- Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- Progressive Retinal Atrophy, crd1 (PDE6B)
- Progressive Retinal Atrophy, crd2 (IQCB1)
- Progressive Retinal Atrophy - crd4/cord1 (RPGRIP1)
- Progressive Retinal Atrophy, PRA3 (FAM161A)
- Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- Day blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6)
- Achromatopsia (CNGA3 Exon 7 German Shepherd Variant)
- Achromatopsia (CNGA3 Exon 7 Labrador Retriever Variant)
ADDITIONAL CONDITIONS TESTED

- Autosomal Dominant Progressive Retinal Atrophy (RHO)
- Canine Multifocal Retinopathy (BEST1 Exon 2)
- Canine Multifocal Retinopathy (BEST1 Exon 5)
- Canine Multifocal Retinopathy (BEST1 Exon 10 Deletion)
- Canine Multifocal Retinopathy (BEST1 Exon 10 SNP)
- Glaucoma (ADAMTS10 Exon 9)
- Glaucoma (ADAMTS10 Exon 17)
- Glaucoma (ADAMTS17 Exon 11)
- Glaucoma (ADAMTS17 Exon 2)
- Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9 Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- Congenital Stationary Night Blindness (RPE65)
- Macular Corneal Dystrophy, MCD (CHST6)
- 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- Cystinuria Type I-A (SLC3A1)
- Cystinuria Type II-A (SLC3A1)
- Cystinuria Type II-B (SLC7A9)
- Polycystic Kidney Disease, PKD (PKD1)
- Primary Hyperoxaluria (AGXT)
- Protein Losing Nephropathy, PLN (NPHS1)
- X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)
- Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3)
- Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia (EDA Intron 8)
ARCHIE

DNA Test Report

Test Date: November 13th, 2018

embk.me/archie57

ADDITIONAL CONDITIONS TESTED

- Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7)
- Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA)
- Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC)
- Glycogen Storage Disease Type IIIA, GSD IIIA (AGL)
- Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 1)
- Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 2)
- Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5)
- Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Whippet and English Springer Spaniel Variant)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Wachtelhund Variant)
- Lagotto Storage Disease (ATG4D)
- Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8)
- Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4)
- Neuronal Ceroid Lipofuscinosis 1, Cerebellar Ataxia, NCL4A (ARSG Exon 2)
- Neuronal Ceroid Lipofuscinosis 1, NCL 5 (CLN5 Border Collie Variant)
- Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7)
- Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 English Setter Variant)
- Neuronal Ceroid Lipofuscinosis (MFSD8)
- Neuronal Ceroid Lipofuscinosis (CLN8 Australian Shepherd Variant)
- Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5)
- Neuronal Ceroid Lipofuscinosis (CLN5 Golden Retriever Variant)
- Adult-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2, Tibetan Terrier Variant)
- GM1 Gangliosidosis (GLB1 Exon 15 Shiba Inu Variant)
- GM1 Gangliosidosis (GLB1 Exon 2)
- GM2 Gangliosidosis (HEXB, Poodle Variant)
ADDITIONAL CONDITIONS TESTED

- GM2 Gangliosidosis (HEXA)
- Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5)
- Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (Italian Greyhound Variant)
- Persistent Mulherian Duct Syndrome, PMDS (AMHR2)
- Deafness and Vestibular Syndrome of Dobermans, DVob, DINGS (MYO7A)
- Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- Alexander Disease (GFAP)
- Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2)
- Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L)
- Cerebellar Hypoplasia (VLDLR)
- Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)
- Hereditary Ataxia (RAB24)
- Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- Degenerative Myelopathy, DM (SOD1A)
- Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2)
- Hypomyelination and Tremors (FNIP2)
- Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP)
- Neuroaxonal Dystrophy, NAD (Spanish Water Dog Variant)
- L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- Polyneuropathy, NDRG1 Greyhound Variant (NDRG1 Exon 15)
- Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4)
- Narcolepsy (HCRTR2 Intron 6)
ADDITIONAL CONDITIONS TESTED

- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
- Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- Juvenile Myoclonic Epilepsy (DIRAS1)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- Dilated Cardiomyopathy, DCM1 (PDK4)
- Dilated Cardiomyopathy, DCM2 (TTN)
- Long QT Syndrome (KCNQ1)
- Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
- Muscular Dystrophy (DMD Pembroke Welsh Corgi Variant)
- Muscular Dystrophy (DMD Golden Retriever Variant)
- Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- Exercise-Induced Collapse (DNM1)
- Inherited Myopathy of Great Danes (BIN1)
- Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- Myotonia Congenita (CLCN1 Exon 7)
- Myotonia Congenita (CLCN1 Exon 23)
- Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Variant)
- Hypocatalasia, Acatalasemia (CAT)
- Pyruvate Dehydrogenase Deficiency (PDP1)
- Malignant Hyperthermia (RYR1)
ADDITIONAL CONDITIONS TESTED

- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8)
- Congenital Myasthenic Syndrome (CHAT)
- Congenital Myasthenic Syndrome (COLQ)
- Episodic Falling Syndrome (BCAN)
- Paroxysmal Dyskinesia, PxD (PGIN)
- Dystrophic Epidermolysis Bullosa (COL7A1)
- Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1)
- Ichthyosis, Epidermolytic Hyperkeratosis (KRT10)
- Ichthyosis (PNPLA1)
- Ichthyosis (SLC27A4)
- Ichthyosis (NIPAL4)
- Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16)
- Hereditary Footpad Hyperkeratosis (FAM83G)
- Hereditary Nasal Parakeratosis (SUV39H2)
- Musladin-Lueke Syndrome (ADAMTSL2)
- Cleft Lip and/or Cleft Palate (ADAMTS20)
- Oculoskeletal Dysplasia 1, Dwarfism-Retinal Dysplasia, OSD1 (COL9A3, Labrador Retriever)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2)
- Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1)
- Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1)
- Skeletal Dysplasia 2, SD2 (COL11A2)
- Craniomandibular Osteopathy, CMO (SLC37A2)
- Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene - CFA12)
ADDITIONAL CONDITIONS TESTED

✅ Chondrodystrophy, Norwegian Elkhound and Karelian Bear Dog Variant (ITGA10)
INBREEDING AND DIVERSITY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog’s genome where the genes on the mother’s side are identical by descent to those on the father’s side.

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison’s disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

High Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

High Diversity

How common is this amount of diversity in mixed breed dogs: